

LonWorks (LN-01)

使用手册

Echelon, LON, LonMaker, NodeBuilder, LonBuilder, LonPoint, LNS, LONWORKS, LonTalk, i.LON, Neuron, 3120, 3150, LonMark, the LonUsers Logo, the Echelon Logo and the LonMark Logo 皆为 Echelon 公司注册商标而且其它商标皆为其注册公司所拥有。

Delta 公司保留不经通知而修改此文件之权利。

第	第一章 概述		1
	1.1 前言		1
	1.2 LN-01 通讯界面		1
	1.3 外型尺寸		1
第	第 二章 安装		3
	2.1 电气规格		3
	2.2 安装 LN-01 于导轨。	(Din RAIL)	3
	2.3 配线		5
	2.4 LN-01 通讯界面网络	初始化	5
	2.5 Service Pin		6
	2.6 文字装置接口文件(Text Device Interface File (.XIF)) .	6
第	第三章 网络配置		7
	3.1 网络实体架构		7
	3.2 LN-01 规格		7
	3.3 LN-01 组态		7
	3.4 取代另一个 LN-01		7
第	第四章 变量功能说明		9
	4.1 标准网络变量(SN	/T)列表	9
	4.1.1 NVIs (网络整台	合工具网络变量输入至台达变频器)	9

4.1.2 NVOs(台达变频器输出网络变量到网络整合工具)	10
4.2 功能简表(Functional Profile)	11
4.3 使用 LN-01 与变频器通讯	12
4.4 读/写变频器参数	13
4.5 运转/停止命令	15
4.6 送频率命令给变频器	15
第五章 错误讯息指示与故障排除	17
5.1 Power LED	17
5.2 SP LED	
5.3 Service LED	

第一章 概述

1.1 前言

本产品为 Modbus 与 LonTalk 通讯的转换界面,透过 LonWorks 网络整合工具对 LN-01 组态(Configure)完成后,LN-01 即可运行于 LonWorks 网络。

本手册提供 LN-01 的安装与设定,以使台达变频器可藉由 LN-01 而连接至 LonWorks 网络。(LN-01 所支持变频器的版本如下表 1-1 所示。)

台达变频器				
变频器机种	韧体版本			
VFD-B	4.00 以上			
VFD-M	3.00 以上			
VFD-S	2.50 以上			
VFD-F	1.90 以上			

表 1-1

1.2 LN-01 通讯界面

LN-01 通讯界面是由一内含神经元芯片的控制卡所组成;LN-01 通讯界面安装完成 后,变频器即可透过LN-01 与 LonWorks 网络上的其它装置(device)相互通讯。

1.3 外型尺寸

第二章 安装

2.1 电气规格

输入电源	16-30VDC, 700mA
传输速率	Modbus: ASCII 7, N, 2; 鲍率: 9600
LonTalk	free topology with FTT-10A 78 Kbps
LonTalk 连接埠	9 terminals, wire gauge: 28-12 AWG, wire strip length: 7-8mm
RS-485 连接埠	6 pins with RJ-11

2.2 安装 LN-01 于导轨(Din RAIL)

1. 请参考图 2-1 将 LN-01 固定于导轨(Din RAIL)上。

图 2-1

第二章 安装| LN-01

 配线时,请参考下表 LonTalk 端之 9-PIN 端子座说明,而 RJ-11 座是一个安全装置 具有防呆功能,出货所附的通讯线可直接插入使用。

Pin 脚	符号	功能	
1	$\langle \rangle$		
2		以双绞线方式接到 LonWorks 装置通讯口。 配线时, pin 脚 1、2 需为一组,而 pin 脚 3、4 需为一组,不可配错。	
3	$\langle \rangle$		
4	\langle		
5	N/A	N/A	
6	$\overline{\frown}$	16~30VDC 的电源输入端子	
7		配线时, pin 脚 6、7 需为一组, pin 脚 8、9 需	
8] 为一组,个可配错(注)。LN-01 内部有桥式 整流电路,所以输入 16~30VDC 时可以不用考	
9	\Box	虑极性。	

表 2-1: LonTalk Pin 脚定义

因为 pin 脚 6、7 与 pin 脚 8、9 是并联的关系,当连接需电源的 LonWorks 装置时,则可将其中一组接至 16~30VDC,则另一组因并联关系,所以也有 16~30VDC 的电压,而此时 LonWorks 装置可直接连接于此。

- 3. LED 指示灯:如图 2-2 所示,从上而下依序是 Power LED, SP LED 与 service LED。
- 4. Service 按钮位于 Service LED 的右下方。
- 5. 当电源开启而 LN-01 处于未组态的情形下,LED 状态将如下述: Power LED 绿色,SP LED 熄灭/绿色/红色皆有可能,service LED 以频率 1/2Hz 闪红色。
- 6. 使用网络整合工具对 LN-01 配置组态。
- 7. 经由网络整合工具对 LN-01 配置组态完成后, power LED 与 SP LED 指示灯应为 绿色且 service LED 必须为熄灭。 若 LED 指示灯状态与上述不同时,请参考手册 第五章问题排除。

2.3 配线

图 2-2

电源输入端/电源输出端(并联): 因为 pin 脚 6、7 与 pin 脚 8、9 是并联的关系,若其中一组接 16~30VDC 则另一组因为具有并联的关系所以也有 16~30VDC 的电压,并且可接 到其它的 LonWorks 装置。由于 LN-01 内部有桥式整流电路,所以输入电源 16~30VDC 时,可不考虑极性。

2.4 LN-01 通讯界面网络初始化

LN-01 通讯界面内含一颗 Echelon 号称的神经元芯片(Neuron Chip),且每一颗神经元芯片均有其独一无二(unique)的地址,称为 Neuron ID。LN-01 硬件安装完成后,LN-01 在网络通讯前,需先做网络初始化。LN-01 的结点地址是于安装时透过安装工具或网络整合工具而决定的。而 Neuron ID 是由 48 位所组成用来识别每个 Neuron chip。LN-01 这个通讯接口会藉由 service pin 来传送 Neuron ID 以在 Lonworks 网络中被识别。

第二章 安装| LN-01

2.5 Service Pin

此双向性(Input/Output)的服务 pin 脚被用来监控内部韧体状态(internal firmware status)与传送 Neuron chip 本身的 Neuron ID 至 LonWorks 网络。

当 LN-01 藉由网络整合工具连上 LonWorks 网络前,使用者需按压 Service Pin (如 图 2-2 所示),送出 LN-01 唯一的 48-bit neuron ID 以供 LonWorks 网络识别。组态成功之后,LN-01 即与 LonWorks 网络联机且 Service LED 熄灭。若 Service LED 没有熄灭,即表示该 LN-01 没有组态成功,请参考第五章错误讯息指示与故障排除。

2.6 文字装置接口文件(Text Device Interface File (.XIF))

每个 LONMARK 装置必须有文字装置接口文件(.XIF 扩展名),使网络整合工具能 在装置的物理连接前设计和配置网络数据库,在安装后调试装置。所有装置还必须自 编文件,以保证基于 LONWORKS 网络服务的任何网络管理工具能从任何 LONMARK 装置(在网上)取得所有必要的信息,以便把装置连接到系统中,并将其 配置和管理。

LN-01 之 XIF 檔以 LN-01_xxx.XIF 表示且符合 78kbps 传输速度。LN-01_xxx.XIF 檔 的 xxx 代表 LN-01 韧体(firmware)版本。

第三章 网络配置

3.1 网络实体架构

以 FT3150 与 FT-X1 支持无极性自由拓朴。

3.2 LN-01 规格

RS-485 通讯格式 ASCII 7, N, 2: 鲍率 9600。 LON 通讯支持自由拓朴且每个信道是 78kbp 的位速率及 64 个装置。

3.3 LN-01 组态

藉由网络整合工具完成配置 LN-01 后,LN-01 即可开始运作于 LonWorks 网络。配置 完成后的 LN-01 其 power LED、SP LED 应为绿色,且 service LED 需为熄灭。若各 LED 状态与上述不符时,请参考第五章问题排除。

3.4 取代另一个 LN-01

在一个已经架构好的网络上,当 LN-01 故障或无法组态(configure)时,可以另一个新的 LN-01 来取代并于 Lonworks 整合环境之下执行 REPLACE 指令后,则此新的 LN-01 即可正常工作。

第三章 网络配置| LN-01

第四章变量功能说明

4.1 标准网络变量(SNVT)列表

透过网络整合工具对输入网络变量(NVIs)更改即等同于对变频器下命令;而输出网 络变量(NVOs)只能于网络整合工具监看而无法改变其状态。详细使用方法如下 述。

4.1.1 NVIs (网络整合工具网络变量输入至台达变频器)

命令	网络变量名称	标准网络变量资料型别	值域	最小 (OFF)	最大 (ON)	分辨率
停止	nviSTOP	SNVT_switch	state	0	1	1
重置	nviRESET	SNVT_switch	state	0	1	1
运转	nviRUN	SNVT_switch	state	0	1	1
寸动	nviJOG	SNVT_switch	state	0	1	1
正/反转	nviFDRV	SNVT_switch	state	0	1	1
频率命令	nviFreqCmd	SNVT_flow_p	N/A	0	65534	0.01
参数命令	nviParaCmd	SNVT_preset	N/A	N/A	N/A	N/A

表 4-1

nviSTOP:

当 state=1 时,变频器停止。

nviRESET:

用来清除错误讯息指示.当变频器异常,例如 OV、OC...等。待异常状况排除之后,设 nviRESET state=1 可清除变频器的异常显示讯息。

nviRUN:

当 state=1 时,变频器运转。

nviJOG:

当 state=1 时,变频器寸动。

第四章 变量功能说明| LN-01 nviFDRV[.]

当 state=1 时,可改变变频器运转方向。例如,若变频器目前是正转,下此命令 则它使变频器变为反转:反之则亦然。

nviFreqCmd:

对变频器下频率命令,详细使用方法请参阅本章下列范例。

nviParaCmd:

对变频器读写参数值,详细使用方法请参阅本章 4.3 节之范例。

4.1.2 NVOs(台达变频器输出网络变量到网络整合工具)

命令	网络变量名称	标准网络变量资料型别	最小	最大	分辨率
显示设定频率	nvoF	SNVT_freq_f	0	3.40282E38	N/A
显示实际运转频率	nvoH	SNVT_freq_f	0	3.40282E38	N/A
使用者定义显示内容	nvoU	SNVT_freq_f	0	3.40282E38	N/A
输出电流	nvoA	SNVT_freq_f	0	3.40282E38	N/A
参数群数目	nvoGROUP	SNVT_flow	0	65534	1
变频器状态	nvoErrCODE	SNVT_freq_f	0	3.40282E38	N/A

衣 4-2

nvoF.

显示设定频率值。nvoF 的值会随着 nviFreqCmd 值的改变而改变。

nvoH:

显示变频器实际运转频率。当变频器停止时,nvoH=0。当变频器运转时,nvoH 的值将逐渐增加,一直增加到 nvoH=nvoF。

nvoU:

使用者定义显示内容。

nvoA.

显示输出电流。

nvoGROUP:

该变量代表变频器的参数群数目;nvoGROUP 会随不同机种或不同变频器软件版 本而有所差异。

nvoErrCODE:

显示变频器运转状态。若 nvoErrCODE=0,代表变频器正常运转。若 nvoErrCODE 大于 0,代表变频器异常,而 nvoErrCODE 显示的数字即是该异常 的代码。以 Delta VFD-S (version 2.50)为例,当 LV 异常发生时, nvoErrCODE 等于 14。至于如何排除 LV 问题,请参考变频器使用手册。

4.2 功能简表(Functional Profile)

下图为可变速马达驱动对象示意图:

第四章 变量功能说明 | LN-01

4.3 使用 LN-01 与变频器通讯

完成 LN-01 组态(configure)后,便可在 LonWorks 网络与 RS-485 之间工作,这表示台达变频器已经可以透过 LN-01 连上 LonWorks 网络,而且 LonWorks 网络也可以透过 LN-01 监控台达变频器。

下面将示范如何在 LonWorks 网络下命令给台达变频器:

此范例从 LonWorks 端对台达变频器 VFD-S 机种下读/写参数、下运转/停止命令与送 出频率命令给台达变频器来做说明。

台达变频器	VFD-B	VFD-M	VFD-S	VFD-F
通讯传送速度 (Baud rate)	P09-01=01	P-89=01	P09-01=01	P09-01=01
通讯传送格式 (ASCII 7, N, 2)	P09-04=00	P-92=00	P09-04=00	P09-04=00 P09-05=00
频率指令来源设 定	P02-00=04 or 05	P-00=04	P02-00=04 or 05	P02-00=04
运转指令来源设 定	P02-01=03 or 04	P-01=03 or 04	P02-01=03 or 04	P02-01=03 or 04
最高操作频率选 择	P01-00=50~400	P-03=50~400	P01-00=50~400	P01-00=50~120

◆ LN-01 连接至变频器前,请先将变频器参数设定如表 4-3 所示。

表 4-3

4.4 读/写变频器参数

对 NviParaCmd 网络变量做适当的设定即可达成读写变频器参数之目的

LN_REPORT_VALUE(读参数) LN_RECALL(写参数) LN_LEARN_VALUE(无作用) LN_LEARN_CURRENT(无作用) LN_NUL(无作用)

范例 1: 将 400 写入变频器参数 05-11

nviParaCmd.learn=LN_RECALL nviParaCmd.selector=1291(十进制)*NOTE nviParaCmd.value[0]=0(无作用) nviParaCmd.value[1]=0(无作用) nviParaCmd.value[2]=01(高位) nviParaCmd.value[3]=90(低位) nviParaCmd.day=0 第四章 变量功能说明 | LN-01 nviParaCmd.hour=0 nviParaCmd.minute=0 nviParaCmd.second=0 nviParaCmd.millisecond=0

因为变频器输入的资料型态是十六进制而 nviParaCmd 是十进制,故须要做进制转换。

步骤 1: 先将值 400 (十进制), 转换成十六进制(0x0190), 然后把 0x0190 的高字节 (0x01)填入 nviParaCmd.value[2]、0x0190 的低字节(0x90)填入 nviParaCmd.value[3]内。

步骤 2: 把参数 05-11 之值(0x050B) 十六进制,转换成十进制 1291。

nviParaCmd.selector=1291

nviParaCmd.value[2]=01

nviParaCmd.value[3]=90

转换完后,即可把400值写入变频器参数05.11内。

	参数	设定
Delta 变频器	05.11	400
进制转换	0x050B(十六进制) 1291(十进制)	0x0190 (十六进制)
LN-01 NVs	nviParaCmd=1291	nviParaCmd.value[2]=01 nviParaCmd.value[3]=90

表 4-4

范例 2: 读出变频器第 02.02 参数的参数值

nviParaCmd.learn=LN_REPORT_VALUE nviParaCmd.selector=514(十进制) * NOTE nviParaCmd.value[0]=0(无作用) nviParaCmd.value[1]=0(无作用) nviParaCmd.value[2]=0(无作用) nviParaCmd.value[3]=1 nviParaCmd.day=0 nviParaCmd.hour=0 nviParaCmd.minute=0 nviParaCmd.second=0 nviParaCmd.millisecond=0

因为变频器输入的资料型态是十六进制而 nviParaCmd 是十进制,故须要做进制转换。

步骤 1: 把参数 02.02 之值 0x0202 视为十六进制。

步骤 2: 将 0x0202 转换成十进制 514, 然后设 nviParaCmd.selector=514。

	参数	设定
Delta 变频器	02.02	N/A
进制转换	0x0202(十六进制) 514(十进制)	N/A
LN-01 NVs	nviParaCmd=514	nviParaCmd.value[2]=00 nviParaCmd.value[3]=01

表 4-5

4.5 运转/停止命令

nviRUN.state=1,变频器运转。

nviSTOP.state=1,变频器停止。

变频器之 "运转命令来源设定" 须设定成 "由 RS-485 通讯界面操作", LN-01 之 nviRUN 与 nviSTOP 才有作用。

4.6 送频率命令给变频器

变频器之 "频率指令来源设定" 与 "运转指令来源设定" 均须设定成 "由 RS-485 通讯界 面操作", LN-01 之 nviFreqCmd 才有作用。

以台达变频器 VFD-S 为例, 欲设定频率命令值超过 60.00Hz 以上, 需设定" 最高操作 频率选择"值为 60.00 以上(请参考表 4-3 的最高操作频率选择)。若使用者要设定频 率命令在 75.40Hz (nviFreqCmd=75.40),则表 4-3 之"最高操作频率选择"必须先 设定成为 75.40Hz 第四章 变量功能说明| LN-01

.

第五章 错误讯息指示与故障排除

LN-01 正面面板有三个 LED 指示灯,如下图所示。当通讯正常,power LED、SP LED 应是亮绿色(若红色指示灯亮起,则表示通讯异常)且 service LED 指示灯需是 熄灭。若 LED 指示灯与上述不同时,请参考以下说明来改善。

5.1 Power LED

状态	功能描述	改善对策
绿色 LED 亮	电源正常且 LN-01 正常运作	
LED 不亮	电源或程序异常	 检查输入电源接头是否有松脱 检查输入电源是否符合 16-30VDC 范 围 检查 LN-01 的 flash memory IC 是否 已依 IC 座的方向性平整的放置于 IC 座内。

5.2 SP LED

状态	功能描述	改善对策
绿色 LED 亮	LN-01 与变频器通讯正常	
绿色 LED 闪烁	LN-01 正在读取变频器默认值	
红色 LED 亮	LN-01 与变频器通讯异常或通 讯逾时	 检查通讯线是否松脱 检查通讯格式与鲍率是否符合 LN-01 之设定条件

5.3 Service LED

状态	功能描述	改善对策
LED 以 1/2 Hz 的频率 闪烁	对于一个尚未组态 (unconfigure)的 LN-01 而 言,此乃正常现象。	透过网络整合工具对 LN-01 进行组态,完成后 LED 会熄灭。
组态(configure)完成 后,LED 熄灭	LN-01 正常现象	
尚未组态 (unconfigure),LED 即 不亮	LN-01 硬件电路异常	 检查电源接头与输入规格 检查 LN-01 电路板上的震荡器之 震荡频率是否在 20MHz 检查神经元芯片外观有无损毁
LED 恒亮,即使第一次 给电亦如此。	LN-01 硬件电路异常	 检查电源接头与输入规格 检查 LN-01 电路板上的震荡器之 震荡频率是否在 20MHz 检查神经元芯片外观有无损毁 检查神经元芯片接脚 17、18 之间 有无短路
LED 于上电初期红色闪 烁,然后熄灭,最后红 色 LED 恒亮。	对于一个尚未运作 (Applicationless Device)的 LN-01 而 言,此乃正常现象	若非本身没有 Application Image 而 导致 Applicationlese 的话,可能是 LN-01 程序或 LN-01 硬件问题导致此 现象。 自我测试检查失败,也可能使此 LED 恒亮。